Science as Inquiry

  • Ability to do scientific inquiry (5-8, 9-12)
  • Understanding of scientific inquiry (5-8, 9-12)

    Life Science

  • Regulation and behavior (5-8)
  • Populations and ecosystems (5-8)
  • The interdependence of organisms (9-12)
  • Matter, energy and organization in living systems (9-12)

    Earth and Space Science

  • Structure of the earth system (5-8)
  • Geochemical cycles (9-12)

    Science and Technology

  • Understandings about science and technology (5-8, 9-12)

    Science in Personal & Social Perspectives

  • Populations, resources and environments (5-8)
  • Risks and benefits (5-8)
  • Science and technology in society (5-8)
  • Environmental quality (9-12)
  • Natural and human induced hazards (9-12)
  • Science and technology in local, national and global challenges (9-12)
  • pumping iron graphic
    a collaboration with Monterey Bay Aquarium Research Institute

    Pumping iron can make a person stronger, more fit. But can pumping iron into the oceans improve the fitness of the Earth? Since the Industrial Revolution, humans have been contributing significantly to global warming partly through the release of large amounts of CO2, a greenhouse gas. In recent years, efforts have been made to reduce anthropogenic CO2 emmissions through conservation measures, including political agreements such as the Kyoto Protocol. In addition to reducing the amount of CO2 produced, another way to limit this greenhouse gas is to find methods of consuming it. A great way to consume CO2 is through photosynthesis by plants.

    The oceans account for approximately 80% of the Earth's surface but only about 50% of primary production. Large areas of the world's oceans, including the central ocean gyres, are not highly productive due to low levels of the nutrients nitrogen and phosphorous. However, there are two areas, the equatorial Pacific and the Southern Ocean, that have high nutrient levels yet still do not have high phytoplankton productivity. (These areas are called HNLC -- high-nutrient, low-chlorophyll waters.) Why is productivity lacking in spite of the presence of sufficient nutrients? Scientists, asking that same question determined that these areas, though nutrient-rich, are lacking in iron. These scientists came up with the Ocean Iron Fertilization Hypothesis to solve the problem.

    The Iron Hypothesis theorizes that by adding iron to HNLC areas, phytoplankton productivity will increase. As the phytoplankton photosynthesize, they take in CO2, incorporating the carbon into their cells and releasing the oxygen to the water and atmosphere. Once the phytoplankton die, they sink below the thermocline taking with them the atmospheric carbon which will remain stored in the deep ocean for a long time. This process is called the biological pump. Benefits of ocean iron fertilization could include not only an inexpensive method of reducing atmospheric CO2, but an increase in fish stocks due to the increase in food. With such beneficial effects, why aren't scientists pumping iron into the oceans like crazy?

    Though ocean iron fertilization sounds like a win-win situation, there may be a downside. Fertilization of the oceans may cause not only good phytoplankton blooms but also harmful algal blooms. In addition, when large phytoplankton blooms die, oxygen is used during decomposition. This could lead to anoxic conditions like the Gulf of Mexico's "dead zone." With anoxic conditions comes the release of methane and nitrous oxide, two other greenhouse gases.

    More research needs to be conducted on ocean iron fertilization to see if this is a viable solution. One such research project is Monterey Bay Aquarium Research Institute's (MBARI) MOOS Upper-water-column Science Experiment (MUSE). The MUSE data show temperature, salinity, nitrate, iron and chlorophyll content in waters just outside of Monterey Bay in California. The following data activity analyzes selected MUSE data from August 2000 during upwelling and non-upwelling (relaxation) events.


    The waters near Monterey Bay, California experience upwelling events that bring cold, nutrient-rich water up from the bottom. During these upwelling events, the area experiences HNLC (high-nutrient, low-chlorophyll) conditions. From August 18 - 26, 2000 the R/V New Horizon sailed off the coast of Monterey Bay conducting the MUSE project. During this time, the area experienced two upwelling events separated by a relaxation event.

    Access MBARI's wind direction data from this time period. How do wind direction and speed change from the upwelling events to the relaxation events?

    Access MBARI's surface contour data for the first upwelling event and the relaxation event.

    During the research cruise, scientists collected samples of surface water and conducted iron enrichment experiments in the lab to see if it was iron-limited. Access the enrichment experiment data. Sample A was water considered to be high in nitrogen and sample B (taken during the second upwelling event) was considered to be high in iron. To each sample, iron was added (open circles) and chlorophyll levels were measured and compared to controls with no iron enrichment (filled circles).

    Based on your analysis of these data, do you think iron fertilization of the waters off of Monterey Bay, California increase primary productivity? What other experiments might you do to see if this would be beneficial? (Hint: Consider the species of phytoplankton, how long the bloom lasts, levels of CO2.)

    For more related resources, visit the Bridge's Climate page.

    Current Data Tip of the Month
    Data Tip of the Month Archives
    On-Line Data Resources

     Tips & Tools
    Other Bridge pages with related information:
    Global Climate Change
    The Heat is On
    Data Tip Archives
    On-line Data
    Bridge Home Port
    Bridge sponsor logosThe Bridge is supported by the National Sea Grant Office, the National Oceanographic Partnership Program, and the National Marine Educators Association.
    , Webkeeper

    © Sea Grant Marine Advisory Services
    Virginia Institute of Marine Science
    College of William and Mary

    Gloucester Point, VA 23062

    National Marine Educators AssociationNational Oceanographic Partnership ProgramNOAASea Grant