Shoreline Evolution:
City of Hampton, Virginia
Chesapeake Bay, Back River, and Hampton River Shorelines

Virginia Insitute of Marine Science
College of William & Mary
Gloucester Point, Virginia

September 2011
Table of Contents

Table of Contents ... i
List of Figures .. i
List of Tables .. i
1 Introduction .. 1
2 Methods ... 1
 2.1 Photo Rectification and Shoreline Digitizing 1
 2.2 Rate of Change Analysis 2
3 Summary ... 4
4 References ... 4

Appendix A. End Point Rate of Shoreline Change Maps

Appendix B. Historical Shoreline Photo Maps

List of Figures

Figure 1. Location of City of Hampton within the Chesapeake Bay estuarine system . . . 1
Figure 2. Index of shoreline plates. ... 3

List of Tables

Table 1. Average end point rate of change (ft/yr) between 1937 and 2009 for segments along Hampton’s shoreline. ... 4
1 Introduction

The City of Hampton has about 95 miles of tidal shoreline along Chesapeake Bay, Hampton Roads, Back River, and Hampton River (Figure 1). Through time, the City’s shoreline has evolved, and determining the rates and patterns of shore change provides the basis to know how a particular coast has changed through time and how it might proceed in the future. Along Chesapeake Bay’s estuarine shores, winds, waves, tides and currents shape and modify coastlines by eroding, transporting and depositing sediments.

The purpose of this report is to document how the shore zone of City of Hampton has evolved since 1937. Aerial imagery was taken for most of the Bay region beginning that year and can be used to assess the geomorphic nature of shore change. Aerial photos show how the coast has changed, how beaches, dunes, bars, and spits have grown or decayed, how barriers have breached, how inlets have changed course, and how one shore type has displaced another or has not changed at all. Shore change is a natural process but, quite often, the impacts of man, through shore hardening or inlet stabilization, come to dominate a given shore reach. In addition to documenting historical shorelines, the change in shore positions along the rivers and larger creeks in City of Hampton will be quantified in this report. The shorelines of very irregular coasts, small creeks around inlets, and other complicated areas, will be shown but not quantified.

2 Methods

2.1 Photo Rectification and Shoreline Digitizing

An analysis of aerial photographs provides the historical data necessary to understand the suite of processes that work to alter a shoreline. Images of the City of Hampton’s shoreline taken in 1937, 1953, 1963, 1980, 1994, 2002, 2006 and 2009 were used in the analysis. The 1994, 2002, 2006 and 2009 images were available from other sources. The 1994 imagery was orthorectified by the U.S. Geological Survey (USGS) and the 2002, 2006 and 2009 imagery was orthorectified by the Virginia Base Mapping Program (VBMP). The 1937, 1953, 1963 and 1980 photos were a part of the VIMS Shoreline Studies Program archives. The historical aerial images acquired to cover the entire shoreline were not always flown on the same day. The dates for each year are: 1937 - April 12; 1953 - October 31, and December 2; 1963 - February 23; 1980 - April 17. The exact dates the 1994 images were flown could not be determined, and the 2002, 2006, and 2009 were all flown in February and March of their respective years.

Figure 1. Location of City of Hampton within the Chesapeake Bay estuarine system.
The shores of Hampton were analyzed for change in Hardaway et al. (2005). However, that project excluded the smaller creeks and rivers. This project added these areas to the shore change database and also updated it to include 2006 and 2009 data. For those sections of the shoreline that needed to be added, the 1937, 1953, 1963 and 1980 images were scanned as tiffs at 600 dpi and converted to ERDAS IMAGINE (.img) format. These aerial photographs were orthographically corrected to produce a seamless series of aerial mosaics following a set of standard operating procedures. The 1994 Digital Orthophoto Quarter Quadrangles (DOQQ) from USGS were used as the reference images. The 1994 photos were used rather than higher quality, more recent aerials because of the difficulty in finding control points that match the earliest year such as 1937 and 1953 images. In addition, about a mile of the 2006 aerials provided by VBMP near the border of Newport News and Hampton on Plate 16 (Figure 2) was shifted. Therefore the shoreline was not digitized in that section in 2006.

ERDAS Orthobase image processing software was used to orthographically correct the individual flight lines using a bundle block solution. Camera lens calibration data were matched to the image location of fiducial points to define the interior camera model. Control points from 1994 USGS DOQQ images provide the exterior control, which is enhanced by a large number of image-matching tie points produced automatically by the software. The exterior and interior models were combined with a digital elevation model (DEM) from the USGS National Elevation Dataset to produce an orthophoto for each aerial photograph. The orthophotographs were adjusted to approximately uniform brightness and contrast and were mosaicked together using the ERDAS Imagine mosaic tool to produce a one-meter resolution mosaic .img format. To maintain an accurate match with the reference images, it is necessary to distribute the control points evenly, when possible. This can be challenging in areas with lack of ground features, poor photo quality and lack of control points. Good examples of control points were manmade features such as road intersections and stable natural landmarks such as ponds and creeks that have not changed much over time. The base of tall features such as buildings, poles, or trees can be used, but the base can be obscured by other features or shadows making these locations difficult to use accurately.

Once the aerial photos were orthorectified and mosaicked, the shorelines were digitized in ArcMap with the mosaics in the background. The morphologic toe of the beach or edge of marsh was used to approximate a low water line. High water limit of runup can be difficult to determine on the shoreline due to narrow or non-existent beaches against upland banks or vegetated cover. In areas where the shoreline was not clearly identifiable on the aerial photography, the location was estimated based on the experience of the digitizer. The displayed shorelines are in shapefile format. One shapefile was produced for each year that was mosaicked.

Horizontal positional accuracy is based upon orthorectification of scanned aerial photography against the USGS digital orthophoto quadrangles. To get vertical control, the USGS 30m DEM data was used. The 1994 USGS reference images were developed in accordance with National Map Accuracy Standards (NMAS) for Spatial Data Accuracy at the 1:12,000 scale. The 2002, 2006 and 2009 Virginia Base Mapping Program’s orthophotography were developed in accordance with the National Standard for Spatial Data Accuracy (NSSDA). Horizontal root mean square error (RMSE) for historical mosaics was held to less than 20 ft.

Using methodology reported in Morton et al. (2004) and National Spatial Data Infrastructure (1998), estimates of error in orthorectification, control source, DEM and digitizing were combined to provide an estimate of total maximum shoreline position error. The data sets that were orthorectified (1937, 1953, and 1963) have an estimated total maximum shoreline position error of ±20.0 ft, while the total maximum shoreline error for the four existing datasets are estimated at 18.3 ft for USGS and 10.2 ft for VBMP. The maximum annualized error for the shoreline data is ±0.7 ft/yr. The smaller rivers and creeks are more prone to error due to their lack of good control points for photo rectification, narrower shore features, tree and ground cover and overall smaller rates of change. These areas are digitized but due to the higher potential for error, rates of change analyses are not calculated.

The Hampton shoreline was divided into 16 plates (Figure 2) in order to display that data in Appendices A and B. In Appendix A, all of the digitized shorelines are shown, and the 2009 image is shown with only the 1937 and 2009 shorelines to show the long-term trends. In Appendix B, two photo dates and their associated shoreline are shown on each plate. These include the photos taken in 1937, 1953, 1963, 1980, 1994, 2002, 2006, and 2009.

2.2 Rate of Change Analysis

The Digital Shoreline Analysis System (DSAS) was used to determine the rate of change for the City’s shoreline (Himmelstoss, 2009). All DSAS input data must be managed within a personal geodatabase, which includes all the baselines created for City of Hampton and the digitized shorelines for 1937, 1953, 1963, 1980, 1994, 2002, 2006, and 2009. Baselines were digitized about 200 feet seaward of the 1937 shoreline and encompassed most of the City’s main shorelines but generally did not include the smaller creeks. It also did not include areas that have unique shoreline morphology such as creek mouths and spits. DSAS generated transects perpendicular to the baseline about 33 ft apart, which were manually checked and cleaned up. For the City of Hampton, this method represented about 33 miles of shoreline along 5303 transects. The End Point Rate (EPR) is calculated by determining the distance between the oldest (1937) and most recent (2009) shoreline in the data and dividing it by the number of years between them. This method provides an accurate net rate of change over the long term and is relatively easy to apply to most shorelines since it only requires two dates. This method does not use the intervening shorelines so it may not account for changes...
Figure 2. Index of shoreline plates.
in accretion or erosion rates that may occur through time. However, Milligan et al. (2010a, 2010b, 2010c, 2010d) found that in several localities within the bay, EPR is a reliable indicator of shore change even when intermediate dates exist. Average rates were calculated along selected areas of the shore; segments are labeled in Appendix A and shown in Table 1.

3 Summary

The rates of change shown in Table 1 are averaged across large sections of shoreline and may not be indicative of rates at specific sites within the reach. Only one section of Chesapeake Bay shows significant erosion. This section is influenced by high erosion at Grandview Nature Preserve and the shoreline fronting Long Creek. Since 2009, breakwaters and beach fill were placed at Northend Point. However, these changes are not part of this analysis since they were installed after the 2009 VBMP photos were flown. The other two sections along Chesapeake Bay (G and H) show accretion. This is a result of structures and beach fill placement at Buckroe Beach and Fort Monroe. Other areas of Hampton Roads, Hampton River, and Back River have sections of shoreline that were filled between 1937 and 2009, thereby altering the natural erosion rate. Also, many sections of Hampton River have shore protection structures that have influenced the change rate.

Table 1. Average end point rate of change (ft/yr) between 1937 and 2009 for segments along Hampton’s shoreline. Segment locations are shown on maps in Appendix A.

<table>
<thead>
<tr>
<th>Segment Name</th>
<th>Location</th>
<th>Average Rate of Change (ft/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Northwest Branch Back River</td>
<td>-0.3</td>
</tr>
<tr>
<td>B</td>
<td>Southwest Branch Back River</td>
<td>0.1</td>
</tr>
<tr>
<td>C</td>
<td>Southwest Branch Back River</td>
<td>-0.4</td>
</tr>
<tr>
<td>D</td>
<td>Back River</td>
<td>-0.2</td>
</tr>
<tr>
<td>E</td>
<td>Harris River</td>
<td>-0.3</td>
</tr>
<tr>
<td>F</td>
<td>Chesapeake Bay</td>
<td>-4.0</td>
</tr>
<tr>
<td>G</td>
<td>Chesapeake Bay</td>
<td>0.4</td>
</tr>
<tr>
<td>H</td>
<td>Chesapeake Bay</td>
<td>0.9</td>
</tr>
<tr>
<td>I</td>
<td>Hampton Roads</td>
<td>0.5</td>
</tr>
<tr>
<td>J</td>
<td>Hampton River</td>
<td>0.2</td>
</tr>
<tr>
<td>K</td>
<td>Hampton Roads</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

References

Appendix A

End Point Rate of Shoreline Change Maps

Shoreline change rate segments are shown on the top map. The calculated rates of change for each transect within the segment were averaged to determine an average rate of change as shown in Table 1 of the report.

Note: The location labels on the plates come from U.S. Geological Survey topographic maps, Google Earth, and other map sources and may not be accurate for the historical or even more recent images. They are for reference only.

<table>
<thead>
<tr>
<th>Plate 1</th>
<th>Plate 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2</td>
<td>Plate 10</td>
</tr>
<tr>
<td>Plate 3</td>
<td>Plate 11</td>
</tr>
<tr>
<td>Plate 4</td>
<td>Plate 12</td>
</tr>
<tr>
<td>Plate 5</td>
<td>Plate 13</td>
</tr>
<tr>
<td>Plate 6</td>
<td>Plate 14</td>
</tr>
<tr>
<td>Plate 7</td>
<td>Plate 15</td>
</tr>
<tr>
<td>Plate 8</td>
<td>Plate 16</td>
</tr>
</tbody>
</table>
City of Hampton, Virginia

Plate 2

Shoreline Rates of Change
- High Accretion: +10 to +15 (ft/yr)
- Medium-Accretion: +5 to +10 (ft/yr)
- Low Accretion: +2 to +5 (ft/yr)
- Very Low Accretion: +0 to +2 (ft/yr)
- Very Low Erosion: -0 to -1 (ft/yr)
- Low Erosion: -1 to -2 (ft/yr)
- Medium Erosion: -2 to -5 (ft/yr)
- High Erosion: -5 to -10 (ft/yr)
- Very High Erosion: < -15 (ft/yr)
City of Hampton
Virginia
Plate 6

Shoreline Change Rate Segments

1937 Shoreline
1994 Shoreline
1953 Shoreline
2002 Shoreline
1993 Shoreline
2006 Shoreline
1980 Shoreline
2009 Shoreline

Shoreline Rates of Change

- High Accretion: +10 to +5 (ft/yr)
- Medium Accretion: +5 to +2 (ft/yr)
- Low Accretion: +2 to +1 (ft/yr)
- Very Low Accretion: +1 to 0 (ft/yr)
- Very Low Erosion: 0 to -1 (ft/yr)
- Low Erosion: -1 to -2 (ft/yr)
- Medium Erosion: -2 to -5 (ft/yr)
- High Erosion: -5 to -10 (ft/yr)
- Very High Erosion: < -25 (ft/yr)

1,000
0
1,000
Feet

Southwest Branch
Back River

2009

Southwest Branch
Back River

C

Shoreline Studies
Program

A-6
Appendix B

Historical Shoreline Photo Maps

Note: The location labels on the plates come from U.S. Geological Survey topographic maps, Google Earth, and other map sources and may not be accurate for the historical or even more recent images. They are for reference only.

<table>
<thead>
<tr>
<th>Plate 1</th>
<th>Plate 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2</td>
<td>Plate 10</td>
</tr>
<tr>
<td>Plate 3</td>
<td>Plate 11</td>
</tr>
<tr>
<td>Plate 4</td>
<td>Plate 12</td>
</tr>
<tr>
<td>Plate 5</td>
<td>Plate 13</td>
</tr>
<tr>
<td>Plate 6</td>
<td>Plate 14</td>
</tr>
<tr>
<td>Plate 7</td>
<td>Plate 15</td>
</tr>
<tr>
<td>Plate 8</td>
<td>Plate 16</td>
</tr>
</tbody>
</table>
City of Hampton, Virginia
Plate 1

Legend
- 1994 Shoreline
- 2002 Shoreline
City of Hampton Virginia
Plate 13

Legend
- 1937 Shoreline
- 1953 Shoreline

Legend
- Shoreline Studies Program

Scale: 1,000 Feet